If it's not what You are looking for type in the equation solver your own equation and let us solve it.
60y-3y^2=0
a = -3; b = 60; c = 0;
Δ = b2-4ac
Δ = 602-4·(-3)·0
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-60}{2*-3}=\frac{-120}{-6} =+20 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+60}{2*-3}=\frac{0}{-6} =0 $
| 174/x=29 | | 8x+7+11x-2=19x+5 | | 5x-2(x-4)=-7+5x+3 | | -10j=-6-8j | | 506=x/25+485 | | 5-7z-8=-8z-8 | | 17=4w+9 | | 3=x/4=25 | | 4(n+2)=5n+3 | | 126/x=7 | | 3(x+6)/5=2x-4 | | 8+4k=3k | | 37+2x=99 | | -10-2u=10-4u | | 89=x/7+84 | | t÷3-6=10 | | x^2−8x=−12 | | 0.3(p-2)=5-0.9p | | 6(x+3)=2x+42 | | x2−8x=−12 | | -10–2u=10–4u | | -3=1/2+b | | 3q-6=4q | | 116=-4(p+1)-10(14p-12) | | (9x+24)(6x-24)=180 | | 5-5(a+2)=7 | | x+14=51 | | (x+1)/2+(x+3)=5 | | (x+1)/x=5/3 | | –2x–4+5x=8 | | 33-h=18 | | 4/12=x/4 |